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Cutting edge: Gas portfolio optimisation

★ The transport of natural gas has received significant atten-
tion in the last year, with the large price spikes in the UK seen 
during sudden cold weather and the stopping of supply flow 
from Russia to Ukraine – and more recently Belarus. Transport 
is a necessity in a world where gas sources are far removed from 
the gas demand, and also in a marketplace in which a gas port-
folio easily spans several countries. 

Meanwhile, the range of options within a gas portfolio is 
growing, with a rising number of instruments and increasing 
international gas trading. This has led to a situation where 
decisions have become non-trivial. The objective of this 
article is to describe how to undertake an integrated approach 
to gas portfolio and transport optimisation. 

In general, an energy company with a gas portfolio is faced 
with gas deliveries at various locations, gas consumers at other 
locations and a grid of pipelines connecting them. While 
supply and demand change over time, the energy company 
must balance the flows at all times. In practice, the energy 
company has many instruments available in order to make 
the flows balance – the difficulty lies in deciding which ones 
to use and how best to utilise these. In this article we put an 
emphasis on costs and consider the central question of how 
to balance the gas network such that the operational costs are 
kept as low as possible. 

In the next section of this paper, we first identify the 
different instruments constituting a gas portfolio and trans-
port system. Then we describe the costs associated with the 
utilisation of these instruments, and consider a basic optimi-
sation model. Next we give an example of how the model 
works, and address the complexity of the model. Finally, we 
discuss how traders and other professionals can use the model 
in practice, and conclude with some directions for the appli-
cation of this within future research.

Instruments in a gas network
To illustrate the setting of this problem, we provide a schematic 
overview of the northwest European gas market in figure 1. 
The figure shows that the gas network consists of an interact-
ing system of source locations (where gas is supplied), demand 
locations (where gas is to be delivered), markets (where gas is 
traded), storages (where gas can be stored for future use), and 
liquified natual gas (LNG) (where gas is liquefied) and gas pipes 
connecting one location to another. 

A crucial constraint in a gas portfolio is that the network 
should be balanced in every hour of each day of the year. There 
are several market instruments that can be used for balancing, 
for example trading, swing and storage. We will discuss these 
in more detail below.

Other instruments include line packing, tolerance and the 
use of LNG. Line packing means that the volume in a gas pipe 
is increased (usually within a day). A gas pipe then acts like a 
small storage area. Tolerance is a service that allows one to have 
small volumetric deviations from a pre-agreed schedule and 
is mainly used for real-time balancing. An upcoming instru-
ment is LNG, which can be seen as a special type of supply. On 
the one hand, an LNG ship can change its course, creating an 
optionality in delivery place. On the other hand, LNG can be 
stored, creating an optionality in delivery time. 

Trading 
Trading is only possible at major hubs. In northwest Europe 
we distinguish three such hubs: NBP in the UK, Zeebrugge 
in Belgium, and TTF in The Netherlands. At these markets, 
only flat daily profiles can be attained; the hourly gas market is 
quite illiquid. This means that for each day, the hourly positions 
within that day are all equal. There are other trading locations, 
but those are very illiquid. 
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Gas can be bought or sold day-ahead, but also bought 
forward in weekly, monthly and yearly blocks. For our model, 
we will assume there exists a daily forward curve, which 
provides us with a spot price for each specific day in the 
future. For an illustration of historic spot prices at the three 
hubs, see figure 2. In the figure we can see there are poten-
tial arbitrage opportunities in time: buy gas now, store it, 
and sell it later at a higher price. In the figure we can also see 
potential arbitrage opportunities in location. For example, it 
may be profitable to buy gas at TTF and then transport it to 
Zeebrugge to sell it there. The depth of the market naturally 
restricts the extent to which a potential arbitrage possibility 
can be exploited. Above certain volumes the market will react 
unfavorably to the executed trades.

Swing 
In conjunction with trading, swing contracts can be utilised. 
These are flexible supply contracts that can be used for daily 
as well as hourly balancing. Furthermore, they can be opti-
mised dependent on price levels: if prices go up, more gas can 
be taken, which can be sold at the market at a higher price 
than the contract price. 

Besides the price per unit of gas taken, swing contracts typi-
cally consist of a pre-agreed base profile with rights and limi-

tations regarding the actual annual, daily and hourly amounts 
of gas taken – all of these should fall within some pre-deter-
mined bandwidth.

Storage
Another instrument that can be used for daily and hourly 
balancing is storage. In physical storage facilities, gas can be 
stored in large quantities for future use. They also serve an 
economic purpose: storage allows us to buy gas in the summer, 
store it until winter, and then sell it at a higher price, either 
at the market or to customers. The main advantage of storage 
is that it is more flexible than swing; storage limitations are 
commonly less rigid than swing contract limitations. 

But there are also drawbacks. First, there are physical limita-
tions, such as limited injection and withdrawal rates, which can 
be both time-dependent and volume-dependent. Second, stor-
ages are subject to outages and maintenance, restricting their 
use. Financial storage contracts contain less physical limitations.

Pipeline system
Finally, to be able to make use of the instruments described 
above, and hence to actually physically transport gas across 
the network, sufficient amounts of capacity are required 
for each of the pipes used for transport. Usually, the energy 
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company will have already acquired capacity on several pipe-
lines, but could purchase additional capacity for balancing or 
arbitrage purposes. This renders pipeline capacity a market 
instrument as well.

There are several problems with capacity. First, there are 
different transport systems: entry-exit in the UK and The 
Netherlands, and point-to-point in Belgium and Germany. 
Second, there are different price formation mechanisms: 
bilateral in Belgium and Germany, auction in the UK, and 
standard tariff according to the first-come-first-serve prin-
ciple in The Netherlands. Furthermore, capacity contracts 
can have different durations and there are different types of 
gas: it can be of low and high caloric value. 

Finally, there can be non-availability of capacity due to a 
variety of reasons such as not being able to buy more capacity 
on a particular pipeline or interruption of a pipeline because 
of an outage or scheduled maintenance. 

Profits and costs
The operational costs in the network consist of factors associ-
ated with the different ways of balancing the network. The 
main profits and costs are related to the selling or buying of 
gas at one of the hubs and the costs of buying gas pipe capac-
ity, tolerance and LNG. Besides, there are costs related to the 
utilisation of swing contracts and the injection and with-
drawal of gas into and from storage. We note that in our basic 
optimisation model we will only consider existing swing 
and storage contracts. The decision to acquire new swing or 
storage contracts is beyond the scope of this paper.

Another type of costs is related to real-time imbalances. If 
we are not able to ship the correct amount of gas to or from 

each of the locations in the network in real-time, penalties 
will be incurred. These penalties can occur due to a mismatch 
in the long-term planning or due to short-term uncertainty 
surrounding, for example, customer demand. In our model 
we optimise under the constraint that for each location and 
for each hour, demand must equal supply (assuming this is 
feasible). We do not explicitly consider short-term uncer-
tainty, although a kind of reserve margin could be included.

Model choice
Given the network structure and the different instruments 
available to balance the network, let us now focus on the 
central question of keeping the total operational costs as low 
as possible. It is not straightforward to decide how to set up a 
formal approach for this problem. 
Our main idea is to formulate the problem in terms of a linear 
program (LP). This is a standard mathematical technique, 
which offers a high degree of flexibility to incorporate addi-
tional model features. It allows for a large number of decision 
variables, and there is a wide range of industrial solvers avail-
able to compute the optimal solution. This reduces the devel-
opment and calculation time considerably. For an introduc-
tion to linear programming and related algorithms, we refer 
to, for example, Bazaraa et al (2004).

The main drawback of an LP formulation is that the optimi-
sation is carried out based on one scenario (usually a predic-
tion) of future prices and demand curves. In fact, all input 
is assumed to be deterministic and potential changes in the 
future are not taken into account at the time of optimisation. 
This means that in principle the influence of uncertainty is 
not captured and that robustness might be an issue. 
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If we were analytically and IT unconstrained, then we 
would opt for a dynamic programming solution in order to 
capture the full value of our flexible instruments. In practice, 
we see that solving this problem can be time-consuming and 
potentially even impossible due to memory constraints, and a 
full dynamic programming solution for the overall optimisa-
tion problem will not be achievable.

In this article we will present our LP approach, which 
includes storage and swing as part of the linear program.

LP optimisation
In this section we give a generic formulation of our optimisa-
tion problem in terms of an LP. An LP is composed of a cost 
function and a set of constraints. Both the cost function and the 
constraints are functions of input data and decision variables. 
Constraints arise because of physical or economical limitations. 
We will consider the optimisation problem to be a cost mini-
misation problem, where revenues are considered to be nega-
tive costs. Revenues are made when gas is sold at a hub. 

Cost function and decision variables 
Our objective is to keep the costs as low as possible. More 
formally, we want to minimise the total operational costs over 
the entire planning period by taking optimal decisions. There 
are essentially two types of decisions that can be made: 

1. Which capacity contracts to engage in; 
2. How much gas in each hour we send from one location  

  to another.
It is easily seen that a third decision, the daily amounts of gas 

we buy/sell at any of the markets, is implied by the hourly flows 
through the network. As mentioned before, we assume there 
exists a daily forward curve. This curve is derived from the 
traded forward blocks and assumed to be known in advance.

Generic LP 
One may state the LP in the following generic form:

minimise 

 

capacity costs  
gas pipes

∑

+ purchasing costs – revenues( )
hubs
∑


 

time
∑

+ swing costs
swing
∑

+ injection costs +  withdrawal costs( )  
storages
∑






 
such that: 
★ The network is balanced in each hour;
★ Daily positions at the hubs meet the hourly flows;
★ Amounts of gas sent through a gas pipe do not exceed the  

  contracted capacity;
★ Swing contract rules are followed;
★ Physical storage and gas pipe limitations are not violated. 

Formal LP
Above we have formulated a generic LP for our problem. 
In this paper we refrain from a full analytical LP formula-
tion due to the considerable space it would take. Instead we 
present below a formal LP formulation for a smaller problem: 
daily optimisation of a storage facility directly connected 
to a market. This is a known problem in energy to which 
also different solution techniques have appeared. See, for 
example, Boogert & De Jong (2006), which presents a 
dynamic programming solution. Such a solution is better able 
to capture the embedded optionality, but does not remain 
attainable for a large network, including many instruments as 
we discuss in this paper. Swing contracts can be treated simi-
larly, but with different constraints.

In this case, our network consists of only two locations (a 
market and a storage facility), which are connected via a direct 
pipeline. We denote the market price at day t by S(t), which 
is assumed to be known in advance. Let decision variable 
f(t) denote the flow from the market through the pipe to the 
storage at day t. This means we buy f(t) at the market and then 
inject it into the storage. At a later stage we can then withdraw 
gas from the storage and transport it to the market. Withdrawal 
can be seen as a negative injection, that is, in case of with-
drawal f(t) will take a negative value. 

Over a total horizon of T days, our actions will result in a 
cost of

 
f (t)S(t)t=1

T∑
 

The flow f(t) is limited by the operational constraints from 
the storage facility. In this example, we illustrate two common 
types of operational constraints. In the first place the daily 
volume change f(t) has to stay within the technical boundaries 
Δmin and Δmax. In the second place, the volume υ(t) has to stay 
between a minimum volume υmin and a maximum volume υmax. 
If we let υ(0) be the initial volume, then the volume in storage 
at the end of day t is

 
υ(0) + f (u)u=1

t∑ .
 

Combining the above we arrive at the following formal LP 
formulation:

 

min
f (t )

f (t)S(t)
t=1

T

∑
 

such that

 

∆min ≤ f (t) ≤ ∆max for all t = 1, ... , T

υmin ≤ υ(0) + f (u)
u=1

t

∑ ≤ υmax for all t = 1, ... , T
 

The formal LP formulation for the full problem can be 
attained by expanding the above LP. One has to introduce a 
second decision variable for capacity, expand the network and 
translate the different constraints from the instruments into 
linear equations. Note that although we have considered a 
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fairly straightforward example, it already requires quite a lot of 
equations (4T to be precise) to be fully expressed.

The example above illustrates how cost elements and 
constraints can be incorporated in the model. Each cost 
element or constraint is a building block, which interacts with 
other building blocks, which together form the optimisation 
problem. Sometimes linearisation poses a problem, but this 
can often be avoided by introducing step functions to closely 
approximate non-linear expressions by linear functions. 

Numerical example 
To give an example of how the algorithm works in practice, 
consider the network shown in figure 3. We took a rela-
tively small problem size of two hubs (locations 1 and 2), 
one hourly swing contract (location 3), five supply/demand 
locations (locations 4 to 8), and two storages (locations 9 and 
10). There are also three artificial connectors, which have an 
hourly demand/supply of 0. The results shown correspond to 
the first hour of an optimisation period of five days. 
We can make several observations, for example:
★ It is easily verified that the network is completely balanced  
in hour 1.
★ Apparently, it is optimal to buy an amount of: 
708.35 × 24 = 17000.40 at hub 1 on the first day. 
Hub 1 has a supply of 12.5 in hour 1. So, an amount of:
708.35 + 12.5 = 720.85 is shipped out of the hub in hour 1.
★ To fulfill the demands in hour 1, gas is brought in from hub 
1, the hourly swing contract, source location 8, and one of the 

two storages. The other storage is not used in hour 1.
With our model one can also run what-if scenarios. For 

example, suppose storage 9 is suddenly out of order. Then, we 
can rerun the optimisation to find an adjusted solution that takes 
this effect into account. The algorithm will then come up with 
an alternative transport scheme that satisfies all the constraints. 

Complexity 
An important aspect of the implementation of the LP is its 
complexity. Clearly, the algorithm should be able to cope 
with realistically sized gas networks and planning horizons. 
For example, for a realistic network with 80 locations and a 
planning horizon of a year, the number of variables in our 
model already reaches roughly 1.5 million, and the number of 
constraints reaches roughly 2 million. This illustrates that the 
complexity of the problem can grow very large in practice. We 
have carried out several tests to see how the performance of the 
algorithm depends on the length of the planning horizon. The 
tests indicate that the number of iterations needed to find the 
optimal solution increases linearly, whereas the solution time 
grows slightly more than quadratically. 

Implementation of the model
Following its development, as well as a sequence of fine-tuning 
steps to enhance its performance, the model was implemented 
in an integrated decision support system to serve as its math-
ematical core. Based on market data that is updated daily, this 
system allows for daily decision-making. It supports traders 
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by providing trading advice on physical arbitrage possibili-
ties, given the current portfolio and transport limitations, 
and proposes which positions to take. Furthermore, from a 
risk management perspective it is important to know which 
contracts are needed to at least be able to serve the demand. To 
this end, the system shows detailed flow information and will 
detect any future capacity problems, such as bottlenecks in the 
network. The model can also be used to run what-if scenar-
ios. For example, one can evaluate the impact of network 
extensions or determine the value of transmission capacity 
from a portfolio perspective. As such, the system can be used 
to confirm, from a quantitative point of view, a trader’s vision 
of the market. All in all, it offers valuable insight into the 
dynamics of a gas portfolio and transport system.

Future directions
Besides the fact that the model presented in this paper has 
immediate practical use, it can also serve as a generic build-
ing block for even more sophisticated optimisation problems 
encountered in gas networks. We see various ways to move 
on from here.

One direction is to extend the structure of the network, 
for example, to include different instruments, such as 
LNG. Another direction is the modelling and integra-
tion of stochastic input parameters, so that we can incor-
porate uncertainty into our decision model. In this respect, 
one should distinguish between stochastic data that does 
not influence the feasibility of the optimisation problem and 
stochastic data that does. 

An example of the first category is stochastic market prices. 
These can be incorporated by implementing several price sets 
each occurring with a certain preset probability. An example 
of the second category is stochastic demands. Incorporation of 
stochastic demands results in a solution that balances the gas 
network only in expectation, and real-time imbalances will 

occur inevitably. Hence, we would include imbalance costs 
as a part of the optimisation in addition to the other costs 
mentioned previously. More examples of the second category 
are stochastic supplies, random storage outages and random 
pipeline unavailability.

In any case, for all implementations we want to stress the 
importance of coping with complexity as the problem scale 
increases, since the model is clearly of little practical use if the 
optimisation does not run. As the network, time horizon or 
availability of market instruments grows, the algorithm will 
eventually fail, because the problem grows too large to solve 
or even too large to keep in memory. Consequently, intel-
ligent modelling and fine-tuning are required to ensure that 
the algorithm will continue to produce good solutions in 
reasonable time. 
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