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The Value of Starting-Up
The Power Plant
Avoiding perfect foresight with Least-Squares Monte Carlo: In this article we demonstrate the impact 
of various start-stop constraints and costs. This impact analysis is possible by applying advanced 
techniques for generating realistic Monte Carlo price simulations in combination with techniques for 
optimising the production pattern.

By Cyriel de Jong, Dirk van Abbema, Henk Sjoerd Los & Hans van Dijken

Gas-fired power plants provide the primary source of 
production flexibility in many power markets. An 
economically optimal use of the start-stop flexibility of 

gas plants is paramount to retrieving the maximum value from 
the asset. With the increasing penetration of wind power, this 
flexibility will become essential to balance the system. While 
starts and stops allow the owner to choose the production hours 
with the largest margin, they are also associated with various 
explicit and implicit costs. 

An important insight that we gain is that different ways to 
limit starts lead to subtle differences in the actual use of the 
power plant and the corresponding value. We also find that 
the common modelling assumption of having perfect foresight 
about the future spark spreads may lead to a significant 
overstatement of plant value. This latter result contrasts our 
previous belief [Los et al, 2009], and statements of some other 
researchers [see Clewlow et al, 2009] who claim that perfect 
foresight is a reasonable assumption. In particular, when there 
is a fixed limit to the number of allowed starts, as is common in 
many Virtual Power Plant (VPP) contracts, uncertainty about 
future margins is definitely reducing plant value. We are able to 
show this result using the concept of Least-Squares Monte Carlo 
as applied to energy assets in e.g. Deng (2006, power plants) 
and De Jong and Boogert (2008; gas storage).

Building Blocks For Plant Valuation
The simplest way to assess the value of a power plant or 

a VPP deal is to discount the forward spark spread back to 
today, assuming production is shut down when forward spark 
spreads are negative. This means the plant is treated as a 
strip of European-style call options on the spark spread. This 
approach ignores the operational costs and constraints that tie 
production hours together, so overestimates true plant value. 
On the other hand, it also underestimates true plant value, 
because the variability in commodity prices generally leads to 
considerable real option value for flexible assets.

In fact, accurate valuation of thermal plants assets requires 
three fundamental elements:
1.	 A realistic model to describe how prices evolve over time; 

the model should be able to generate realistic Monte Carlo 
simulations.

2.	 A powerful methodology to find the optimal production 
pattern for the different price scenarios, incorporating all 
relevant costs and constraints.

3.	 A framework to analyse different trading and hedging 
strategies.

In a previous article in WorldPower (Los et al, 2009), we 
provided a description of all three building blocks. In particular, 
we highlighted the concept of cointegration: It links power 
prices to the fundamentals of the market (merit order) and 
thereby keeps spark spreads within reasonable bounds, while 
maintaining the stochastic nature of prices. In a case study for 
a 3-year VPP deal we found that the flexibility (extrinsic) value 
equaled 40% of intrinsic value if we included a realistic degree 
of cointegration. Without cointegration, the extrinsic value 
became far too large though.

Start Limitations
Last year’s article1 also showed the impact of various 

operational costs and constraints, ranging from minimum 
runtimes and start costs to maintenance and plant degradation. 
In this article, we introduce a new constraint, namely a hard 
limit to the number of times a plant operator may start in a 
year. We show how this compares to other start constraints and 
demonstrate that perfect foresight about future prices leads to 
over-optimistic assessments.

Some start costs are very clearly defined, such as the purchase 
of start fuel, which is the fuel consumed while firing-up to the 
minimum stable generation level. Other start costs are included 
to account for the detrimental effect on the condition of a unit 
caused by stopping and restarting the unit. A challenging aspect 
of start costs is that they may depend on the temperature of the 
unit, e.g. cold, warm, or hot. The temperature in turn depends 
on how long the unit has been offline. A plant operator will 
need to know for how long they have been offline, in order to 
make the correct cost calculation. In the solution framework of 
dynamic programming this creates additional states that the 
model needs to keep track of. For example, when a hot start 
is possible after 4 hours, a warm start after 8 hours and a cold 
start after 24 hours, we have 3 different start cost structures 
associated with 24 states.

... we introduce a new constraint, namely 
a hard limit to the number of times a plant 

operator may start in a year
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An even more challenging operational constraint is a hard 
bound limitation to the number of starts, or alternatively, that 
start costs increase with the number of starts made before. This 
can be used to avoid an otherwise quite destructive number of 
starts, e.g. every working day. As a consequence of such a hard 
bound constraint, the owner of a plant will try to minimize the 
number of startups. In any case, the plant operator needs to 
keep track of two quite different statistics:
1.	 How many hours is the plant already offline, or how many 

hours is it already producing? This is a statistic (‘state’ in the 
dynamic programming language) which looks at the recent 
history of actions.

2.	 How many times did the plant start already this year? This 
is a statistic of a different nature, looking back until the 
beginning of the year. 

Whatever the model implementation is, an optimisation 
tries to search for the optimal dispatch taking into account the 
current and future spark spread 
levels, the current ‘short-history’ 
state, and the current ‘long-
history state’.

Solution Approaches to 
Handle Start Constraints

In this paragraph we will demonstrate three different 
solution approaches, each using backward valuation dynamic 
programming. We show the pros and cons of each, but before 
doing so, a fourth alternative is worth mentioning. Mixed-
integer linear programming (MILP) is a common alternative in 
which the objective (profit maximization) and constraints are 
written down in a set of linear equations. While this approach is 
relatively easy to implement, it is often a factor 5-20 slower than 
a dynamic programming approach due to the large number 
(at least 8,760 per year) of decision variables. Even more, 
MILP ignores any price uncertainty, which is part of our third 
approach below. These approaches are:
1.	 A dynamic programming approach for the ‘short-history’ 

constraint, and a ‘shadow cost’ for the ‘long-history’ 
constraint to limit the number of starts. This approach 
assumes perfect foresight about future price levels.

2.	 A dynamic programming approach for both types of 
constraints, meaning we have an additional dimension to 
keep track of the number of previously made starts. This 
approach assumes perfect foresight about future price levels.

3.	 As 2, but assuming no perfect foresight. This means the plant 
operator has to judge the likely level of spark spreads in the 
future and take decisions which are inevitably suboptimal 
in certain situations. We use Least-Squares Monte Carlo to 
establish this strategy.

The paper of Tseng and Barz (2002) is the primary academic 
reference for a description of a dynamic programming approach 
to handle short-history constraints of up/down times. The picture 
below shows the main logic. The model distinguishes between 
different states (y-axis) that the plant can reach at different hours 
(x-axis). In the shown example with 2 hours minimum on-time 
and 2 hours minimum off-time, if the plant is up (‘on’) for 2 hours 
or more it can stay ‘on’ or go ‘off’; if it is off for 1 hour (idem 
if on for 1 hour), the operator has no choice other than to stay 
off for one more hour. At each node, the model compares the 
continuation values (F) for the alternatives it has and chooses the 
maximum. For example, when at the end of hour t the plant is 
already off for 2 hours or more, the choice is:

Solution approach 1 means we run through the dynamic 
program a couple of times. In round 1 we only include the real 
costs for starting up (Start Costs, e.g. fuel-related) and set the 
shadow costs for starts to zero (Shadow Costs = 0). If the number 
of starts is below the maximum, we are done. If the number of 
starts in the previous round is above the maximum, we modify 
the shadow cost. We make as many modifications to the shadow 
cost until the model reaches the maximum plant value within 
the start limitation per year. In our implementation typically 10-
20 rounds are needed before reaching the optimum; the  whole 
procedure generally  takes less than 1 second per simulation 
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max {F on 1hr  +  Margin  –  Start Costs t+1   –  Shadow Costs	 “Plant switched on in hour t+1”

	 F off 2hr
		  t+1	

“Plant switched on in hour t+1”



over a 1-year horizon on an ordinary computer.
Solution approach 2 can be carried out with a single model 

run, but overall it is generally more time consuming. The reason 
is that we expand the state-space by a factor of NMax, where 
NMax equals the number of allowed starts per year: whereas 
the original dimensions in the previous example are 8,760 x 4, 
they now become 8,760 x 4 x 50 when, for example, 50 starts 
are allowed. Multiplying the dimensions gives the number of 
‘nodes’ in the state-space: from each node the model decides 
which other node in the next hour is optimal. Continuing the 
previous example, and assuming we already started 20 times 
before (N=20), the choice is:

The time-consuming part is that this type of calculation needs 
to be performed for each N = 0 to 49.

Solution approach 3 is Least-Squares Monte Carlo. The 
general idea is to estimate the values at the different nodes, 
instead of assuming perfect knowledge about the true value. 
Longstaff and Schwartz (2001) made this approach popular 
and it is a key algorithm in many KYOS applications. In the 
above example and a maximum of 50 starts, the model carries 
out 8,760 x 4 x 50 individual linear regressions (‘least squares’) 
to estimate the values at the node.

For example, in order to estimate  F on 1hr  N=21 at (t+1) the 
continuation value  it is based on a regression estimate, which 
may take the following form:

This equation is estimated at each node, so in our example 
we get different parameters for each of the 8,760 x 4 x 50 

nodes. The regression is carried out on simulated price 
levels at time t, which are here denoted by S(t) and P(t). In 
our implementation we use the current spark spread as S(t) 
and the average spark spread over the past 24 hours as P(t). 
Additional price information, such as the forward spark 
spread, may be incorporated to improve the estimate, but 
our analysis suggests this hardly improves the performance. 
However, this whole process takes quite some time, making 
the model roughly 10 times slower than with approach 2 and 
roughly 50 times slower than with approach 1. This is the price 
we pay for avoiding perfect foresight.

Case Description
Developing the 

above solutions is a 
considerable effort. The 
question is whether this 

pays off in better insights when comparing different investment 
options. Furthermore, the question is whether the additional 
calculation time of the Least-Squares Monte Carlo method leads 
to fundamentally new outcomes.

In order to verify this, we consider a power plant over 
the year 2011 in the UK market. As a first step, we generate 
Monte Carlo simulations over 2011, using KYOS’ model KySim 
as we did for our study last year. The model incorporates 
cointegration and a multi-commodity and multi-factor model 
for the forward curve movements. It is also based on a regime-
switches and cointegration for spot prices. The CCGT plant 
under consideration has a maximum output of 860 MW at an 
efficiency of 57.5%.

When spark spreads are negative, the plant can reduce its 
output to the minimum stable level of 510 MW at an efficiency 
of 54.5%. It can also turn off the production and restart at a 
later point in time. In the base case the plant can start and 
stop without any limitation and without any start costs. Based 
on a single scenario (the hourly forward curves), the optimal 
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F on 1hr  N=21  = α + β1 . St + β2 . St2 + γ1 . Pt + γ2 . Pt2

                t+1 

max {F on 1hr,  N=21  +  Margin t+1  –  Start Costs t+1   –  Shadow Costs       “Plant switched on in hour t+1”
	 t+1

	 F off 2h,   N = 20                                                                         “Plant remains off in hour t+1”
		  t+1

Siemans Press Picture
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production pattern produces an intrinsic value of GBP 93.5 
million. Volatility in the market prices create extrinsic value on 
top, leading to a total average value across the simulations of 
GBP 117.7 million.

When Starts Are Costly or Limited
There are no CCGT plants that can actually run at any 

chosen hour. A start requires additional fuel consumption and 
reduces maintenance cycles. Restarting may only be possible 
after a few cool-down hours, but too many cooling hours may 
also require additional fuel to restart. We distinguish a hot 
start (within 4 hours), a warm start (within 16 hours) and 
a cold start (after more than 16 hours off). Hot and warm 
starts are cheaper than a cold start by a factor of 3/7 and 5/7 
respectively.

Increasing the costs for a cold start strongly reduces the 
number of starts. In the base case scenario the plant made 
on average about 1 start per day. A relatively low impediment 
of GBP 17,500 (about GBP 20/MW capacity) for a cold start 
roughly halves the number of starts to 187 per year (Figure 1). 
A doubling of start costs reduces the average number of starts 
further to 145. And with costs of GBP 280,000 only 10 starts per 
year are made on average. With start costs at such a high level, 
plant value obviously goes down – from GBP 117.7m to 100.9m.

There are at least two other ways to reduce the start-stop 
frequency. First, one can impose a minimum number of 
production hours after which a stop is allowed. Our analysis 
combines this with a start cost of GBP 35,000. Figure 2 shows 
that a minimum run-time of up to 8 hours is not a problem, 
but at 16 hours there is a sudden drop in number of starts 
and in plant value. Second, one can explicitly impose an 
upper bound to the number of allowed starts in a year, a 
common element in VPP contracts. Again, we combine this 
with a (cold) start cost of GBP 35,000. In Figure 3 it is shown 
that the plant value with up to 60 allowed starts hardly 
declines relative to the unconstrained case: the value goes 
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Figure 1:  Costs Per Plant Start

Source:  KYOS Energy Consulting

Figure 3:  

Figure 2:  
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down from GBP 109.2 to 107.4 million. However, 
with fewer starts the plant is eventually affected 
with a value going below GBP 100 million for 2 
allowed starts.

Non-Perfect Foresight:
Least-Squares Monte Carlo

The above results may not be a fair assessment 
of the value that can be extracted from this power 
plant. The dispatch optimisation has been carried 
out using perfect foresight about the price levels 
in the rest of the year. While operators may be 
able to have a quite precise assessment of prices in 
the next 24-48 hours, assessing spread levels and 
start-stop frequency a couple of weeks or months 
out, is more challenging.

The Least-Squares Monte Carlo approach provides a 
methodology to introduce a degree of non-perfect foresight. 
Its impact is most pronounced when the number of allowed 
starts per year is the only limiting factor. So, there are no 
explicit start costs or minimum run-times. Figure 4 shows that 
there is a decline in value when the optimal moments to start 
cannot be selected with perfect foresight. The more stringent 
the start limitation, the more difficult it is to operate optimally, 
ultimately leading to a value decline of around GBP 6 million 
if only 10 starts per year are allowed.

The implemented Least-Squares Monte Carlo approach 
provides an estimate of the plant’s continuation value using 
only spot price information. Alternative specifications, 
incorporating forward price data, reduces the GBP 6 million 
slightly, but by never more than GBP 1 million in our test setups.

Conclusion
Gas-fired power plants have generally higher marginal 

production costs than other production units. Yet, what 

motivates their investment is the combination of lower 
investment costs (per MW capacity) and their flexibility to 
vary production. With a rising penetration of wind power, and 
especially offshore wind, the price fluctuations in the hourly 
markets are expected to become more extreme. Nevertheless, 
the flexibility of gas-fired plants is not unlimited as each start 
is associated with explicit and implicit costs. In this article we 

showed how such costs can be introduced in an investment 
analysis. We also showed that there is considerable real option 
value in the hourly production flexibility.

However, this flexibility is likely to be overstated when 
assuming perfect foresight in the optimal dispatch decision. 
Using the Least-Squares Monte Carlo methodology, our 
calculations demonstrate that the value loss due to non-
perfect foresight may amount to 5% of the total plant value. 
This is a fundamentally new outcome and worth the extra 
modelling effort.  ■
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Using LSMC methodology ... the value 
loss due to non-perfect foresight may 
amount to 5% of the total plant value
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Figure 4:  Optimal Moments to Start – Valuation


